Orthonormal RBF wavelet and ridgelet-like series and transforms for high-dimensional problems

نویسنده

  • W. Chen
چکیده

This paper developed a systematic strategy establishing RBF on the wavelet analysis, which includes continuous and discrete RBF orthonormal wavelet transforms respectively in terms of singular fundamental solutions and nonsingular general solutions of differential operators. In particular, the harmonic Bessel RBF transforms were presented for high-dimensional data processing. It was also found that the kernel functions of convection-diffusion operator are feasible to construct some stable ridgelet-like RBF transforms. We presented time-space RBF transforms based on non-singular solution and fundamental solution of time-dependent differential operators. The present methodology was further extended to analysis of some known RBFs such as the MQ, Gaussian and pre-wavelet kernel RBFs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Errata and supplements to: Orthonormal RBF Wavelet and Ridgelet-like Series and Transforms for High-Dimensional Problems

In recent years some attempts have been done to relate the RBF with wavelets [1,2] in handling high dimensional multiscale problems. To the author’s knowledge, however, the orthonormal and bi-orthogonal RBF wavelets are still missing in the literature. By using the nonsingular general solution and singular fundamental solution of differential operator [3], recently the present author made some ...

متن کامل

Constructing Two-Dimensional Multi-Wavelet for Solving Two-Dimensional Fredholm Integral Equations

In this paper, a two-dimensional multi-wavelet is constructed in terms of Chebyshev polynomials. The constructed multi-wavelet is an orthonormal basis for space. By discretizing two-dimensional Fredholm integral equation reduce to a algebraic system. The obtained system is solved by the Galerkin method in the subspace of by using two-dimensional multi-wavelet bases. Because the bases of subs...

متن کامل

Orthonormal Ridgelets and Linear Singularities

We construct a new orthonormal basis for L(R), whose elements are angularly integrated ridge functions — orthonormal ridgelets. The new basis functions are in L(R) and so are to be distinguished from the ridge function approximation system called ridgelets by Candès (1997, 1998), as ridge functions are not in L(R). Orthonormal ridgelet expansions have an interesting application in nonlinear app...

متن کامل

Ridge Functions and Orthonormal Ridgelets

Orthonormal ridgelets are a specialized set of angularly-integrated ridge functions which make up an orthonormal basis for L2(R). In this paper we explore the relationship between orthonormal ridgelets and true ridge functions r(x1 cos θ + x2 sin θ). We derive a formula giving the ridgelet coefficients of a ridge function in terms of the 1-D wavelet coefficients of the ridge profile r(t), and w...

متن کامل

Radon and Ridgelet transforms applied to motion compensated images

Images are typically described via orthogonal, non-redundant transforms like wavelet or discrete cosine transform. The good performances of wavelets in one-dimensional domain are lost when they are applied to images using 2D separable basis since they are not able to efficiently code one-dimensional singularities. The Ridgelet transform achieves very compact representation of linear singulariti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره cs.SC/0207006  شماره 

صفحات  -

تاریخ انتشار 2001